Synaptic activity drives calcium-mediated changes in neuronal gene transcription that are required for long-lasting adaptations of neuronal structure and function. These adaptations include – among others – synaptic plasticity, learning and memory, structural remodeling, and acquired neuroprotection. Our research focuses on a particular form of neuronal adaption, namely metabolic plasticity. We are interested in understanding how activity-dependent gene transcription controls neuronal energy metabolism and how this renders mitochondria more resistant to stressful conditions. To address these questions, we are using a combination of molecular biology, biochemistry and live imaging in primary hippocampal neurons, organotypic hippocampal slice
Share This Speaker